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Abstract— We study the robustness to external disturbances
of large 1-D network of double-integrator agents with dis-
tributed control. We provide precise quantitative comparison
of certain H∞ norm between two common control architec-
tures: predecessor-following and symmetric bidirectional. In
particular, we show that the scaling laws of the H∞ norm
for predecessor-following architecture is O(αN ) (α > 1), but
only O(N3) for symmetric bidirectional architecture, where
N is the number of agents in the network. The results for
symmetric bidirectional architecture are obtained by using
a PDE model to approximate the closed-loop dynamics of
the network for large N . Numerical calculations show that
the PDE approximation provides accurate predictions even
when N is small. In addition, we examine the robustness of
asymmetric bidirectional architecture. Numerical simulations
show that with judicious asymmetry in the velocity feedback,
the robustness of the network can be improved considerably
over symmetric bidirectional and predecessor-following archi-
tectures.

I. INTRODUCTION

Distributed control of vehicular formation is relevant to

a wide range of applications such as automated highway

system, collective behavior of bird flocks and animal swarms,

and formation flying of aerial, ground, and autonomous

agents for energy savings, surveillance, mine-sweeping,

etc. [1]–[4]. A fundamental issue in distributed control is

that as the number of agents in the formation increases,

the performance of the closed-loop degrades. Several recent

works have focused on the fundamental limitations of large

vehicular formation with distributed control; [5], [6] have

studied the stability margin of the platoon, while [7]–[11]

have examined the system’s sensitivity to external distur-

bances.

In this paper we study the robustness (sensitivity to distur-

bances) of a large 1-D network of double-integrator agents

with distributed control, in which each agent is modeled

as a double integrator. The control objective is to make

the network track a desired trajectory while maintaining a

rigid formation geometry. The desired trajectory of the entire

network is determined by a leader in front of the formation,

and the desired formation geometry is specified as constant

inter-agent spacings between each pair of agents.

Two decentralized control architectures that are commonly

examined in the literature are predecessor-following and

symmetric bidirectional. In the predecessor-following archi-

tecture, the control action on each agent only depends on the
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relative information from its immediate predecessor, that is,

the agent in front of it. In the symmetric bidirectional archi-

tecture, it depends equally on the relative information from

its immediate predecessor and follower. The predecessor-

following architecture has extremely high sensitivity to exter-

nal disturbances (see [12], [13] and references therein). This

is typically referred to as string instability [14] or slinky-type

effect [15], [16]. Seiler et. al. showed that string instability

with the predecessor-following architecture is independent of

the design of the controller on each agent, but a fundamental

artifact of the architecture [8]. String instability can be

ameliorated by non-identical controllers at the agents but at

the expense of the control gains increasing without bound as

the number of the agents increases [16], [17].

The high sensitivity to disturbance of predecessor-

following architecture led to the examination of the sym-

metric bidirectional architecture for its perceived advantage

in rejecting disturbances, especially with absolute velocity

feedback [12]. It was shown later that symmetric bidirec-

tional architectures also suffers from high sensitivity to dis-

turbances when only relative measurements are used [8], [9],

[18]. Indeed, such high sensitivity to disturbances persists

even for more general architectures, where every agent uses

information from more than two neighbors [10], [11].

Although a rich literature exists on sensitivity to dis-

turbances with predecessor-following and symmetric bidi-

rectional architectures, to the best of our knowledge, a

precise comparison of the performance between these two

architectures - in terms of quantitative measures of robustness

is lacking. This paper addresses exactly this problem. In

particular, we establish how certain H∞ norm, that quantifies

the system’s robustness, scale with the size of the network for

each of these two architectures. More precisely, we examine

the amplification factor, which is defined as the H∞ norm

of the transfer function from the disturbances on all the

following agents to their position tracking errors.

For the predecessor-following architecture, we show that

the amplification factor scales as O(αN ) for some α > 1.

Thus, as the size of the network increases, the amplification

of disturbance increases geometrically. We then show that

with symmetric bidirectional architecture, the amplification

factor is only O(N3). In addition, the resonance frequency in

this architecture is O(1/N). Thus, among the two control ar-

chitectures, the symmetric bidirectional architecture performs

far better than the predecessor-following architecture in terms

of sensitivity to disturbance, especially as the network size

becomes large.

The analysis for the symmetric bidirectional architecture

is carried out with a PDE approximation of the closed-
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loop dynamics. A PDE approximation is frequently used in

the analysis of many-particle systems in statistical physics

and traffic-dynamics, large spring-mass systems on lattice

and synchronization of coupled-oscillators [19]–[21]. In our

previous work [6], [22], PDE models provide an insightful

and convenient framework to study the stability margin of

large vehicular formations. The PDE models used here are

based on the PDE model derived in [22]. Although the PDE

is derived under the assumption that N is large, numerical

results show that it makes an accurate approximation even

when N is small (e. g. N = 10).

In this paper, we assume each agent has a double-

integrator dynamics and the network is homogeneous: each

agent in the network has the same open-loop dynam-

ics and uses the same control law. The assumption of

double-integrator dynamics comes from the fact that single-

integrator models fail to reproduce the slinky-type ef-

fects [11] and higher order dynamics will result in instability

for sufficient large N [9], [23]. And also, heterogeneity in

agent mass and control gains has little effect on the stability

margin and sensitivity to disturbance of the network [10],

[18], [22]. However, we show by numerical simulation

that asymmetry has a substantial effect on the robustness

of the 1-D network, where asymmetry refers to that the

information from the front and back neighbors are weighted

prejudicially. Judicious asymmetry in the velocity feedback

can improve the robustness of the 1-D network considerably

over symmetric control.

The rest of this paper is organized as follows. Section II

presents the problem statement. Section III describes the

PDE model of the 1-D network with symmetric bidirectional

architecture. Analysis of the amplification factor for both

symmetric bidirectional and predecessor-following architec-

tures as well as the conjecture for asymmetric bidirectional

architecture appear in Section IV. The paper ends with

summary and design guidelines in Section V.

II. PROBLEM STATEMENT

We consider the formation control of N+1 homogeneous

agents (1 leader and N followers) which are moving in 1-D

Euclidean space, as shown in Figure 1 (a). The position of

the i-th agent is denoted by pi ∈ R. The dynamics of each

agent are modeled as a double integrator:

mip̈i = ui + wi, i ∈ {1, 2, · · · , N}, (1)

where mi is the mass, ui is the control input and wi is the

external disturbance on the i-th agent. This is a commonly

used model for vehicle dynamics in studying vehicular

formations, and results from feedback linearization of non-

linear vehicle dynamics [11], [16], [24]. The disturbance on

each agent is assumed to be wi = ai sin(ωt+ θi).
The control objective is that agents maintain a rigid

formation geometry while following a constant-velocity type

desired trajectory. The desired geometry of the formation

is specified by constant desired inter-agent spacing ∆(i−1,i)

for i ∈ {1, · · · , N}, where ∆(i−1,i) is the desired value of

...

O X
∆(0,1)∆(N−1,N)

01N − 1N

(a)

...

0 1 x1/N1/N

x = 1x = 0

(b)

Fig. 1. Desired geometry of a 1-D network of double-integrator agents
with 1 “leader” and N “followers”, which are moving in 1-D Euclidean
space. The filled agent in the front of the network represents the leader, it
is denoted by “0”. (a) is the original graph of the network in the p coordinate
and (b) is the redrawn graph of the same network in the p̃ coordinate.

pi−1(t)−pi(t). Each agent i knows the desired gaps ∆(i−1,i),

∆(i,i+1). The desired trajectory of the network is specified

in terms of a leader whose dynamics are independent of the

other agents. The leader is indexed by 0, and its trajectory

is denoted by p∗0(t) = v∗t + ∆(0,N), where v∗ is a positive

constant, which is the cruise velocity of the network. The

desired trajectory of the i-th agent, p∗i (t), is given by

p∗i (t) = p∗0(t)−∆(0,i) = p∗0(t)−
∑i

j=1 ∆(j−1,j). To facilitate

analysis, we define the following position tracking error:

p̃i := pi − p∗i . (2)

In this paper, we consider the following decentralized

control law, where the control on the i-th agent depends

on the relative position and velocity measurements from its

immediate predecessor and possibly its immediate follower:

ui = − kf
i (pi − pi−1 + ∆i,i−1) − kb

i (pi − pi+1 − ∆i+1,i)

− bfi (ṗi − ṗi−1) − bbi(ṗi − ṗi+1), (3)

uN = − kf
i (pN − pN−1 + ∆N,N−1) − bfi (ṗN − ṗN−1),

where i ∈ {1, · · · , N−1} and kf
i , k

b
i (respectively, bfi , b

b
i ) are

the front and back position (respectively, velocity) gains of

the i-th vehicle. Note that the information needed to compute

the control action can be easily accessed by on-board sensors,

since only relative information is used.

Definition 1: The control law (3) is symmetric if each

vehicle uses the same front and back control gains: kf
i =

kb
i = k0, b

f
i = bbi = b0, and is called homogeneous if

kf
i = kf

j , kb
i = kb

j and bfi = bfj , bbi = bbj for every pair

(i, j) where i, j ∈ {1, 2, · · · , N − 1}. �

Results in [10], [18], [22] show that heterogeneity in

vehicle mass and control gains has little effect on the

sensitivity to disturbance and stability margin of the network.

Therefore we focus on homogeneous platoons:

kf
i = (1 + εk)k0, kb

i = (1 − εk)k0,

bfi = (1 + εb)b0, bbi = (1 − εb)b0, (4)

mi = 1, i ∈ {1, 2, · · · , N},

where εk ∈ [0, 1] and εb ∈ [0, 1] are the amounts of

asymmetry in the position and velocity gains respectively.
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Definition 2: We call the architecture corresponding to

εk = εb = 0 the symmetric bidirectional, since the control

action on each vehicle depends equally on the information

from its immediate predecessor and follower, the architecture

corresponding to εk = εb = 1 the predecessor-following,

since the control action on each vehicle only depends on the

information from its immediate predecessor, and the architec-

ture corresponding to other cases asymmetric bidirectional.

�

In this paper, we study how the sensitivity to external

disturbances scale with respect to the number of agents N
in the network. We define the following metric.

Definition 3: The amplification factor AF is defined as

the H∞ norm of the transfer function from the disturbances

acting on all the followers to their position tracking errors.

�

To study the amplification factor, we assume there are

sinusoidal disturbances acting on all the followers but not

the leader, and study the H∞ norm of the transfer function

from the disturbances W = [w1, w2, · · · , wN ] ∈ R
N on

all the followers to their position tracking errors E =
[p̃1, p̃2, · · · , p̃N ] ∈ R

N , where wi = ai sin(ωt + θi) and

p̃i is defined in (2). Since there is no disturbance on the

leader, its desired trajectory is given by p∗0(t) = v∗t+∆(0,N).

Using the position tracking error defined in (2), for the

predecessor-following architecture, the closed-loop dynamics

can be expressed as

¨̃pi = − kf
i (p̃i − p̃i−1) − bfi ( ˙̃pi − ˙̃pi−1) + wi, (5)

where i ∈ {1, · · · , N}. For the bidirectional architecture, the

closed-loop dynamics can be written as

¨̃pi = − kf
i (p̃i − p̃i−1) − kb

i (p̃i − p̃i+1)

− bfi ( ˙̃pi − ˙̃pi−1) − bbi( ˙̃pi − ˙̃pi+1) + wi, (6)

¨̃pN = − kf
i (p̃N − p̃N−1) − bfi ( ˙̃pN − ˙̃pN−1) + wN ,

where i ∈ {1, · · · , N − 1}.

For both architectures, the closed-loop dynamics can be

represented in the following state-space form:

Ẋ = AX +BW, E = CX, (7)

where X is the state vector, which is defined as X :=
[p̃1, ˙̃p1, · · · , p̃N , ˙̃pN ] ∈ R

2N , W is input vector (external

disturbances) and E is the output vector (position tracking

errors).

Recall that the H∞ norm of a transfer function G(s) =
C(sI −A)−1B from W to E is defined as:

||G(jω)||H∞
= sup

ω∈R+

σmax[G(jw)] = sup
W

||E||L2

||W ||L2

, (8)

where σmax denotes the maximum singular value. 1 For

the predecessor-following architecture, the dynamics of each

agent only depend on the information from its predecessor.

1In this paper, the L2 norm is well-defined in the extended space L2
e =

{u|uτ ∈ L2, ∀ τ ∈ [0,∞)}, where uτ (t) = (i) u(t), if 0 ≤ t ≤
τ ; (ii) 0, if t > τ. See [25, Chapter 5]. With a little abuse of notation,
we suppress the subscript and write L2 = L2

e.

Due to this special coupled structure, a closed-form transfer

function can be derived, we can derive estimates for the am-

plification factor by using standard matrix theory. However,

for bidirectional architecture, it is in general difficult to find

a closed-form formula for the amplification factor from the

state-space domain. We take an alternate route and propose a

PDE model, which is seen as a continuum approximation of

the coupled-ODE model (6), to analyze and study the H∞
norms of the 1-D network of double-integrator agents.

III. PDE MODELS OF THE NETWORK WITH SYMMETRIC

BIDIRECTIONAL ARCHITECTURE

The analysis in the symmetric bidirectional architecture

relies on PDE models, which are seen as a continuum

approximation of the closed loop dynamics (6) in the limit of

large N , by following the steps involved in a finite-difference

discretization in reverse. To facilitate analysis, we redraw the

graph of the 1-D network of double-integrator agents, so that

the position of the agents in the graph are always located in

the interval [0, 1], irrespective of the number of agents. The

i-th agent in the “original” graph, is now drawn at position

(N − i)/N in the new graph. Figure 1 shows an example.

With symmetric control gains kf
i = kb

i = k0, b
f
i = bbi =

b0, the closed-loop dynamics (6) can be written as

¨̃pi =
k0

N2

(p̃i−1 − 2p̃i + p̃i+1)

1/N2
+

b0
N2

( ˙̃pi−1 − 2 ˙̃pi + ˙̃pi+1)

1/N2

+ ai sin(ωt+ θi). (9)

The starting point for the PDE derivation is to consider a

function p̃(x, t) : [0, 1]× [0, ∞) → R that satisfies:

p̃i(t) = p̃(x, t)|x=(N−i)/N , (10)

so that functions that are defined at discrete points i will

be approximated by functions that are defined everywhere

in [0, 1]. The original functions are thought of as samples

of their continuous approximations. Use the following finite

difference approximations:

[ p̃i−1 − 2p̃i + p̃i+1

1/N2

]

=
[∂2p̃(x, t)

∂x2

]

x=(N−i)/N
,

[ ˙̃pi−1 − 2 ˙̃pi + ˙̃pi+1

1/N2

]

=
[∂3p̃(x, t)

∂x2∂t

]

x=(N−i)/N
.

Under the assumption that N is large but finite, Eq. (9) can

be seen as finite difference discretization of the following

PDE:

∂2p̃(x, t)

∂t2
=
k0

N2

∂2p̃(x, t)

∂x2
+

b0
N2

∂3p̃(x, t)

∂x2∂t
+ a(x) sin(ωt+ θ(x)), (11)

where a(x), θ(x) : [0, 1] → R are defined according to the

following stipulations:

ai = a(x)|x= N−i
N
, θi = θ(x)|x= N−i

N
. (12)

The boundary conditions of PDE (11) depend on the ar-

rangement of leader in the graph. For our case, the boundary
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conditions are of the Dirichlet type at x = 1 where the leader

is, and Neumann at x = 0:

∂p̃

∂x
(0, t) = 0, p̃(1, t) = 0. (13)

The PDE model (11) is a forced wave equations with

Kelvin-Voigt damping. It is an approximation of the coupled-

ODE model in the sense that a finite difference discretization

of the PDEs yield (6) [26], [27].

IV. ROBUSTNESS (SENSITIVITY TO DISTURBANCES)

A. Symmetric bidirectional architecture

We first present the result on amplification factor for the

1-D network of double-integrator agents with symmetric

bidirectional architecture.

Theorem 1: Consider the PDE model (11)-(13) of the 1-

D network with symmetric bidirectional architecture, the

amplification factor AF sb and resonance frequency ωsb
r have

the asymptotic formula

AF sb ≈ 8N3

√
k0b0π3

, ωsb
r ≈

√
k0π

2N
. (14)

These formulae hold for large N . �

Proof of Theorem 1. For a multi-input-multi-output system,

the H∞ norm is defined as the supremum of the maximum

singular value of the transfer function matrix G(jω) over

all frequency ω ∈ R
+. Equivalently, it can be interpreted

in a sinusoidal, steady-state sense as follows (see [28]). For

any frequency ω, any vector of amplitudes a = [a1, · · · , aN ]
with ‖a‖2 ≤ 1, and any vector of phases θ = [θ1, · · · , θN ],
the input vector

W = [w1, · · · , wN ]

= [a1 sin(ωt+ θ1), · · · , aN sin(ωt+ θN )] (15)

yields the steady-state response of E of the form

E = [p̃1, · · · , p̃N ]

= [b1 sin(ωt+ ψ1), · · · , bN sin(ωt+ ψN )]. (16)

The H∞ norm of G(jω) can be defined as

‖G(jω)‖H∞
= sup ‖b‖2 = sup

ω∈R+,a,θ∈RN

‖E‖L2

‖W‖L2

. (17)

Therefore, in the PDE counterpart, the H∞ norm is deter-

mined by

H∞ = sup
ω∈R+,a(x),θ(x)

||p̃(x, t)||L2

‖a(x) sin(ωt+ θ(x))‖L2

, (18)

where a(x) and θ(x) are piecewise smooth functions defined

in [0, 1].
PDE (11)-(13) is a nonhomogeneous PDE with homogeneous

boundary conditions, the solution of p̃(x, t) can be solved

by eigenfunction expansion, see [26, Chapter 8]. Before we

proceed, notice that the forcing term satisfies

a(x) sin(ωt+ θ(x)) = a1(x) sin(ωt) + a2(x) cos(ωt),

where a1(x) = a(x) cos(θ(x)) and a2(x) = a(x) sin(θ(x)).
From the superposition property of linear system, the out-

put is the sum of the outputs corresponding to inputs

a1(x) sin(ωt) and a2(x) cos(ωt) respectively. We first con-

sider the response of the PDE with input a1(x) sin(ωt). The

PDE is now given by

∂2p̃(x, t)

∂t2
=

k0

N2

∂2p̃(x, t)

∂x2
+

b0
N2

∂3p̃(x, t)

∂x2∂t
+ a1(x) sin(ωt).

To proceed, we first consider the following homogeneous

PDE with homogeneous boundaries (13)

∂2p̃(x, t)

∂t2
=

k0

N2

∂2p̃(x, t)

∂x2
+

b0
N2

∂3p̃(x, t)

∂x2∂t
. (19)

The above PDE can be solved by the method of separation

of variables, we assume solution of the form p̃(x, t) =
∑∞

ℓ=1 φℓ(x)hℓ(t). Substituting the solution into the above

PDE (19), we get the following space-dependent ODE

1

N2

d2φℓ(x)

dx2
+ λℓφℓ(x) = 0, (20)

where λℓ = (2ℓ − 1)2π2/(4N2) and φℓ(x) = cos((2ℓ −
1)πx/2) are the eigenvalue and its corresponding eigenfunc-

tion of the Sturm-Liouville eigenvalue problem (20) with

following boundary conditions, which come from (13),

dφℓ

dx
(0) = 0, φℓ(1) = 0. (21)

Notice that the eigenvalue λ1 is the smallest eigenvalue, it is

called the principal mode of the damped wave equation (19).

Since the eigenfunctions are complete (because of Sturm-

Liouville Theory), any piecewise smooth functions can be

expanded in a series of these eigenfunctions, see [26].

Therefore, a1(x) can be expanded as a series in terms of

φℓ(x), i.e. a1(x) =
∑∞

ℓ=1 dℓφℓ(x). Substituting the series

into the above PDE and using p̃(x, t) =
∑∞

ℓ=1 φℓ(x)hℓ(t),
we have the following time-dependent ODEs:

d2hℓ(t)

dt2
+ b0λℓ

dhℓ(t)

dt
+ k0λℓhℓ(t) = dℓ sin(ωt), (22)

where ℓ ∈ {1, 2, · · · } and dℓ is given by

dℓ = 2

∫ 1

0

a1(x)φℓ(x) dx. (23)

Again, for each mode λℓ, the steady-state response hℓ(t) is

given by

hℓ(t) =
dℓ

√

ω4 + (b20λ
2
ℓ − 2k0λℓ)ω2 + k2

0λ
2
ℓ

sin(ωt+ ψℓ)

= Aℓdℓ sin(ωt+ ψℓ), (24)

for some constant ψℓ. Following straightforward algebra, the

maximum amplitude Aℓ and its resonance frequency for each

mode is

Aℓ =

{

8N3

(2ℓ−1)3b0π3
1√

k0−(2ℓ−1)2b20π2/(16N2)
, if ℓ ≤ ℓ0

1
λℓk0

, otherwise,

(25)
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ωℓ =

{

(2ℓ−1)π
2N

√

k0 − (2ℓ− 1)2b20π
2/(8N2), if ℓ ≤ ℓ0

0, otherwise,

(26)

where ℓ0 = 2
√

2k0N+π
2π .

When N is large, it’s not difficult to see from (25) that, the

maximum of Aℓ is achieved at ω = ω1. Therefore, for a

finite L2 norm of a1(x), to achieve the largest L2 norm of

p̃(x, t), a1(x) should be equal to the eigenfunction of the first

mode a1(x) = φ1(x), i.e. the projection of a1(x) onto other

eigenfunctions is zero dℓ = 0 (ℓ = 2, 3, · · · ). Similarly, the

following relationship a2(x) = φ1(x) should hold for input

a2(x) cos(ωt), which implies θ(x) = θ0 is constant, since

a1(x) = a(x) cos(φ(x)) and a2(x) = a(x) sin(φ(x)).
Consequently, the output with the maximum L2 norm is

given by

p̃(x, t) = A1φ1(x) sin(ωt+ ψ1). (27)

Therefore, the H∞ norm of the system is obtained

H∞ = A1
‖φ1(x) sin(ωt+ ψ1)‖L2

‖φ1(x) sin(ωt+ θ0)‖L2

= A1. (28)

Using the assumption that N is large in (25) and (26), we

compete the proof.

B. Disturbance amplification with predecessor-following ar-

chitecture

In this section, we present the result of disturbance am-

plifications with predecessor-following architecture.

Theorem 2: Consider an N -agent network with

predecessor-following architecture. The amplification

factor AF pf is asymptotically approximated by

AF pf ≈ β

√

α2N − 1

α2 − 1
, (29)

where α = |T (jωpf
r )| > 1, β = |S(jωpf

r )|, in which

T (s) =
2b0s+ 2k0

s2 + 2b0s+ 2k0
, S(s) =

1

s2 + 2b0s+ 2k0
,

and ωpf
r is the resonance frequency

ωpf
r ≈

√

√

k4
0 + 4k3

0b
2
0 − k2

0

b0
.

These formulae hold for large N . �

The proof follows a similar line of attack as the work

in [8]. Interested readers are referred to Corollary 1 of [29]

for an explicit proof.

C. Disturbance amplification with asymmetric bidirectional

architecture

For the asymmetric bidirectional architecture, we consider

the following control gains, which stabilize the network [22]:

1) Equal amount of asymmetry, i.e. 0 < εk = εb < 1. In

this case, it was shown in Theorem 3.5 of [30] that certain

H∞ norm (which is different from the amplification factor)

10 20 50 100 250
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Symmetric bidi.
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(Equal asymmetry)
Asymmetric bidi.

Predecessor foll.

Predecessor foll.
(Prediction (29))

Conjecture 1

Fig. 2. Numeric comparison of the amplification factor AF between the
predecessor-following and bidirectional architectures.

grows exponentially in N . We show by numerical simula-

tions that the amplification factor AF as with equal asym-

metry are approximately O(γN ) (γ > 1), see Section IV-

D. The asymmetric bidirectional architecture with equal

asymmetry in the position and velocity feedback thus suffers

from high sensitivity to disturbances, as the predecessor-

following architecture. However, it doesn’t imply asymmetric

bidirectional architectures is not preferable, as shown below.

2) Asymmetric velocity feedback, i.e. εk = 0, 0 < εb < 1.

It was shown in [22] that the stability margin, which is

defined as the absolute value of the real part of the least

stable eigenvalue of the state matrix A, can be improved

considerably by using the asymmetric velocity feedback over

symmetric control. We conjecture that the robustness can also

be ameliorated significantly with asymmetric velocity feed-

back, which is witnessed by extensive numerical simulations.

Conjecture 1: Consider an N -agent network with asym-

metric bidirectional architecture. When there is small asym-

metry in the velocity feedback, i.e. εk = 0, 0 < εb ≪ 1, the

amplification factor AF av asymptotically satisfies

AF av ≈ O(N2). �

D. Numerical verification

In this section, we compare the robustness of the network

with different control architectures. In addition, we verify the

analytic predictions in Theorem 1 and Theorem 2 with their

numerically computed values. All numerical calculations are

performed in Matlab c©. Figure 2 shows the comparison of

amplification factor between the predecessor-following and

bidirectional architectures. We can see that the amplifica-

tion factor grows geometrically in the predecessor-following

architecture and asymmetric bidirectional architecture with

equal asymmetry. In contrast, in the symmetric bidirectional
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architecture, these amplifications grow much slower than the

two architectures aforementioned. In addition, the asymmet-

ric velocity feedback architecture gives the best robustness

performance. Besides, we see that the numerical result of

the amplification factor in the asymmetric velocity feedback

architecture coincides with our conjecture. Moreover, the

analytic predictions match the numerical results very well,

which verified our analysis in Theorem 1 and Theorem 2. In

all cases, the control gains used are k0 = 1 and b0 = 0.5. The

amounts of asymmetry in the cases of equal asymmetry and

asymmetric velocity feedback are given by εk = εb = 0.2
and εk = 0, εb = 0.2, respectively.

V. SUMMARY AND DESIGN GUIDELINES

We studied the robustness to external disturbances of large

1-D networks of double-integrator agents with two decentral-

ized control architectures: predecessor-following and bidi-

rectional. In particular, we examined how the amplification

factor scale with N , the number of agents in the network.

The analysis of the amplification factor with symmetric

bidirectional architecture relied on a PDE model, which ap-

proximates the closed-loop dynamics of the network for large

N . Numerical calculations showed that the PDE model made

an accurate prediction to the scaling laws of amplification

factor even when N is small.

Comparing Conjecture 1 with those results in Theorem 1

and Theorem 2 as well as Theorem 3.5 of [30] (equal asym-

metry), we see that asymmetric velocity feedback yields the

best robustness performance compared to other architectures.

The next preferable choice is the symmetric bidirectional

architecture. The predecessor-following and asymmetric bidi-

rectional with equal amount of asymmetry are the worst

choices for control design in terms of robustness, their

amplification factors growing extremely fast with N . In

conclusion, the asymmetric velocity feedback is the preferred

choice for control design to get a good robustness.
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